مدل‌سازی عوامل کلیدی پرورش تفکر نقادانه در دانشجویان مهندسی: یک پژوهش روش‌های آمیخته اکتشافی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد رشته آموزش مهندسی، دانشکده فنی مهندسی، دانشگاه تهران، ایران

2 دانشیار، بخش تخصصی پژوهش و سنجش، دانشکده روان‌شناسی و علوم تربیتی، دانشگاه تهران، تهران، ایران

3 دانشیار، گروه آموزشی علوم پایه وآموزش مهندسی، دانشکده علوم مهندسی، دانشگاه تهران، تهران، ایران

4 دانشیار، گروه روش‌ها و برنامه‌ریزی آموزشی و درسی، دانشکده روان‌شناسی و علوم تربیتی، دانشگاه تهران، تهران، ایران

10.22034/cipj.2025.64534.1249

چکیده

هدف: تفکر نقادانه، کلید حل مسائل پیچیده مهندسی است. برخورداری از این شایستگی‌، دانشجویان را به تحلیلگرانی توانمند تبدیل می‌کند. در فضای چندبعدی مهندسی، شناسایی و تقویت عوامل مؤثر بر این تفکر، موتور محرک ارتقای کیفیت آموزش و خلق راه‌حل‌های نوآورانه است. هدف این پژوهش، شناسایی و مدلسازی عوامل تأثیرگذار بر تفکر نقادانه در میان دانشجویان مهندسی است.
روش پژوهش: پژوهش حاضر با رویکرد آمیخته و طرح اکتشافی انجام شد. در بخش کیفی، یک بررسی نظام‌مند بر اساس‌ دستورالعمل PRISMA صورت‌گرفت و مقالات نمایه‌شده در پایگاه‌های اسکوپوس و ساینس‌دایرکت تحلیل شدند. با بهره‌گیری از تحلیل اسناد، تحلیل محتوای مقایسه‌ای پژوهش‌های مرتبط و مصاحبه با خبرگان، عوامل مؤثر بر تفکر نقادانه استخراج شد. در بخش کمّی، روابط میان عوامل شناسایی‌شده با استفاده از تحلیل معادلات ساختاری تفسیری (ISM) بررسی و سطح‌بندی گردید. سپس با به‌کارگیری تحلیل تاثیرات متقابل مستقیم و غیرمستقیم (MICMAC)، میزان اثرگذاری و اثرپذیری متقابل عوامل مشخص و یافته‌های کیفی تأیید شد.
یافته‌ها: از میان ۱۱ عامل استخراج‌شده، هشت عامل کلیدی شامل روش‌های تدریس تعاملی، کیفیت محتوای آموزشی، توانایی تحلیل و حل‌مسئله، نظام پشتیبانی و بازخورد، پرورش خلاقیت، عوامل محیطی ـ فرهنگی، کاربرد فناوری در آموزش و عوامل فردی–انگیزشی، تأثیر معناداری بر تقویت تفکر نقادانه دانشجویان مهندسی دارند.
نتیجه‌گیری: نتایج نشان می‌دهد که تقویت تفکر نقادانه در آموزش مهندسی مستلزم نگاهی سیستماتیک و تمرکز بر عوامل مستقل و ارتباطی است. بازطراحی برنامه‌های درسی، توسعه روش‌های تدریس تعاملی و بازنگری نظام‌های ارزیابی می‌تواند زمینه‌ساز تربیت مهندسانی توانمند و آماده برای مواجهه با چالش‌های نوین باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling the Key Factors in Fostering Critical Thinking among Engineering Students: An Exploratory Sequential Mixed Methods Study

نویسندگان [English]

  • Zahra Akbari Pordanjani 1
  • Keyvan Salehi 2
  • Akram Hosseinian 3
  • Mohammad Javadipour 4
1 MSc in Engineering Education, Faculty of Engineering Sciences, University of Tehran, Tehran, Iran
2 Associate Professor, Division of Research and Assessment, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
3 Associate Professor, Faculty of Engineering Science, University of Tehran, Tehran, Iran
4 Associate Professor, Department of Methods, Curriculum and Educational Planning, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
چکیده [English]

Objective: Critical thinking is the key to solve complex engineering problems. This competency transforms students into capable analysts. In the multidimensional realm of engineering, identifying and strengthening the factors that influence this thinking is the driving force for enhancing educational quality and fostering innovative solutions. Accordingly, the aim of this study is to identify and model the factors affecting critical thinking among engineering students.
Method: This study employed an exploratory mixed-methods approach. In the qualitative phase, a systematic review based on PRISMA was conducted on articles from Scopus and Science Direct. Additionally, factors influencing critical thinking were extracted through document analysis, comparative studies, and expert interviews. In the quantitative phase, the relationships among these factors were examined and structured using Interpretive Structural Modeling (ISM). Subsequently, MICMAC analysis was applied to determine the driving power and dependence of the factors and to validate the qualitative findings.
Results: Among the eleven factors identified, eight key factors—including interactive teaching methods, quality of educational content, analytical and problem-solving skills, support, evaluation, and feedback systems, creativity development, environmental–cultural factors, the use of technology in education, and individual and motivational factors—were found to have a significant impact on enhancing critical thinking among engineering students.
Conclusion: The findings indicate that strengthening critical thinking in engineering education requires a systematic perspective and a focus on independent and linkage factors. Redesigning curricula, developing interactive teaching methods, and revising assessment systems can contribute to educating competent engineers who are well prepared to address emerging and complex challenges.

کلیدواژه‌ها [English]

  • chemical engineering
  • critical thinking
  • ISM
  • interpretive structural modeling
  • MICMAC
Abrami, P. C., Bernard, R. M., Borokhovski, E., Waddington, D. I., Wade, C. A., & Persson, T. (2015). Strategies for teaching students to think critically: A meta-analysis. Review of educational research85(2), 275-314.‏ https://doi.org/10.3102/0034654314551063
Adair, D., & Jaeger, M. (2016). Incorporating critical thinking into an engineering undergraduate learning environment. International Journal of Higher Education, 5(2), 23–39. https://www.researchgate.net/publication/292190233
Akbari-Pardanjani, Z., & Salehi, K. (2024). A systematic review of critical thinking outcomes in engineering education. Iranian Journal of Engineering Education, 26(101), 47–84.https://www.magiran.com/p2747592 [in Persian]
Akbari-Pardanjani, Z., & Salehi, K. (2024). A systematic review of critical thinking outcomes in engineering education. Iranian Journal of Engineering Education, 26(101), 47–84. https://www.magiran.com/p2747592 [in Persian]
Akbari-Pardanjani, Z., Hosseinian, A., Salehi, K., & Javadipour, M. (2025). Identifying factors influencing critical thinking among chemical engineering graduates at the University of Tehran using ISM and MICMAC analysis. Studies in Engineering Education Planning. Advance online publication. https://doi.org/10.48308/mpes.2025.237116.150 [in Persian]
Al-Emran, M., Mezhuyev, V., & Kamaludin, A. (2019). PLS-SEM in information systems research: A comprehensive methodological reference. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018 (Vol. 4, pp. 644–653). Springer. https://www.researchgate.net/publication/327291847
Awla, H. A. (2014). Learning styles and their relation to teaching styles. International Journal of Language and Linguistics, 2(3), 241–245. https://www.researchgate.net/publication/275567766
Azar, A., Adel, T., Mogbel-Bararaz, A., Navari-Rostami, A., & Ali-Asghar, A. (2021). Designing a supply chain agility model: An interpretive structural modeling approach. Management Research in Iran, 14(4), 1–25. https://mri.modares.ac.ir/article_126.html [in Persian]
Azar, A., Adel, T., Mogbel-Bararaz, A., Navari-Rostami, A., & Ali-Asghar, A. (2021). Designing a supply chain agility model: An interpretive structural modeling approach. Management Research in Iran, 14(4), 1–25.https://mri.modares.ac.ir/article_126.html [in Persian]
Azar, A., Khosravani, F., Jalali-Dehdashti, A., & Adel, A. (2023). Developing a university life cycle: A fuzzy approach. Journal of Research and Planning in Higher Education, 17(1), 1–25. https://journal.irphe.ac.ir/article_702745.html
[in Persian]
Azar, A., Khosravani, F., Jalali-Dehdashti, A., & Adel, A. (2023). Developing a university life cycle: A fuzzy approach. Journal of Research and Planning in Higher Education, 17(1), 1–25.https://journal.irphe.ac.ir/article_702745.html [in Persian]
Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual review of psychology52(1), 1-26.‏
Baniasadi, A., Salehi, K., Khodaie, E., Bagheri Noaparast, K., & Izanloo, B. (2023). Fairness in classroom assessment: A systematic review. The Asia-Pacific Education Researcher, 32, 91–109. https://www.researchgate.net/publication/357752757
Barke, H. D., Hazari, A., & Yitbarek, S. (2008). Misconceptions in chemistry: Addressing perceptions in chemical education. Springer. https://www.researchgate.net/publication/287232117
Bekele, A. T., & Menchaca, M. P. (2018). Learner and instructor identified success factors in distance education. Distance Education, 29(3), 303–318. https://doi.org/10.1080/01587910802395771
Berestova, A., Kolosov, S., Tsvetkova, M., & Grib, E. (2022). Academic motivation as a predictor of the development of critical thinking in students. Journal of Applied Research in Higher Education, 14(3), 1041–1054. https://www.researchgate.net/publication/351763077
Biasi, M. R. D., Valencia, G. E., & Obregon, L. G. (2019). A new educational thermodynamic software to promote critical thinking in youth engineering students. Sustainability, 12(1), 110. https://www.researchgate.net/publication/338122187
Brandriet, A. R. (2014). Investigating students' understandings of the symbolic, macroscopic, and particulate domains of oxidation-reduction and the development of the redox concept inventory (Doctoral dissertation, Miami University). https://www.researchgate.net/publication/264338665
Brookfield, S. D. (2012). Critical theory and transformative learning. The handbook of transformative learning: Theory, research, and practice, 131-146.‏
Burkholder, E., Hwang, L., & Wieman, C. (2021). Evaluating the problem-solving skills of graduating chemical engineering students. Education for Chemical Engineers, 34, 68–77. https://www.researchgate.net/publication/347396192
Bybee, R. W. (2000). Teaching science by inquiry. In J. Minstrel & E. H. van Zee (Eds.), Inquiring into inquiry learning and teaching science (pp. 20–46). AAAS.
Calvari, A. (2024). Investigating the impact of implementing an independent curriculum on problem-solving skills in chemical engineering education. International Journal of Curriculum Development, Teaching, and Learning Innovations, 2(2), 77–85.
Carter, M. (2012). Review of Thinking, Fast and Slow by Daniel Kahneman. Inquiry: Critical Thinking Across Disciplines, 27(2), 50–53.
Cohen, R., Herscovitz, O., & Dori, Y. J. (2020). Understanding abstract concepts in chemistry: A qualitative investigation of student conceptions. Chemistry Education Research and Practice, 21(1), 201–213. https://doi.org/10.1039/C9RP00218A
Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). Sage Publications.
Currano, R., Steinert, M., & Leifer, L. (2012). Design loupes: A bifocal study to improve the management of engineering design innovation by co-evaluation of the design process and information sharing activity. In Design thinking research: Studying co-creation in practice (pp. 89–105). Springer.
de Andrade, A. O., de Oliveira Siqueira, A. M., & Araújo, W. D. R. M. (2018). Learning styles and teaching strategies in chemical engineering: An study. International Journal of Development Research, 8(11), 24407–24413.
Dewey, J. (1933). How we think: A restatement of the relation of reflective thinking to the educative process. HMH.
Elder, L., & Paul, R. (2020). Critical thinking: Tools for taking charge of your learning and your life. Foundation for Critical Thinking.
Elder, L., & Paul, R. (2020). Critical thinking: Tools for taking charge of your learning and your life. Rowman & Littlefield.‏
Ennis, R. H. (1991). Critical thinking: A streamlined conception. Teaching Philosophy, 14(1), 5–24. https://doi.org/10.5840/teachphil19911412
Ennis, R. H. (2018). Critical thinking across the curriculum: A vision. Topoi37(1), 165-184.‏
Facione, P. A. (1990). The California critical thinking skills test—College level: Technical report #1: Experimental validation and content validity. Insight Assessment.
Facione, P. A. (2011). Critical thinking: What it is and why it counts. Insight assessment1(1), 1-23.‏
Farmer, J. L., & Wilkinson, L. (2018). Engineering success: Using problem-based learning to develop critical thinking and communication skills in a chemical engineering classroom. Proceedings of the Canadian Engineering Education Association (CEEA).
Fazlalizadeh, R. (2024). The effect of critical approach components on academic achievement of 4th-grade female students in science. Learner-Centered Curriculum and Instruction Journal, 3(1). https://cipj.tabrizu.ac.ir/article_18211.pdf [in Persian]
Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering education. Engineering Education, 78(7), 674–681.
Fensham, P. J. (2009). Real world contexts in PISA science: Implications for context-based science education. Journal of Research in Science Teaching, 46(8), 884–896.
Fensham, P. J. (2009). The link between policy and practice in science education: The role of research. Science Education, 93(6), 1076–1095.
Freed, R., Tuli, G., Mantri, A., Singh, N., & Garg, A. (2021). Critical thinking in STEM education: Analysis and assessment methods. Journal of STEM Education, 22(3), 45–57.
Garrison, D. R., & Anderson, T. (2004). Framework for research and practice. Journal of Distance Learning, 8(1).
Garrison, D. R., & Anderson, T. (2007). E-learning in the 21st century. Routledge.
Glavič, P., Lukman, R., & Lozano, R. (2009). Engineering education: Environmental and chemical engineering or technology curricula – A European perspective. European Journal of Engineering Education, 34(1), 47–61.
Halpern, D. F. (2013). The Halpern critical thinking assessment: A response to the reviewers. Inquiry: Critical Thinking Across the Disciplines, 28(3), 28–39.
Halpern, D. F. (2013). Thought and knowledge: An introduction to critical thinking. Psychology press.‏
Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112. https://doi.org/10.3102/003465430298487
Hattie, J., & Timperley, H. (2007). The power of feedback. Review of educational research77(1), 81-112.‏
Hofstein, A., & Mamlok-Naaman, R. (2007). The role of the laboratory in science education: The case of chemistry. Science Education, 91(2), 319–335. https://doi.org/10.1002/sce.21173
Hosseini, M. H., & Akbari, A. (2014). Designing an organizational knowledge management excellence model using interpretive structural modeling. Journal of Information Technology Management, 20(6), 351–374.https://www.magiran.com/p1327003 [in Persian]
Hosseini, M. H., & Akbari, A. (2014). Designing an organizational knowledge management excellence model using interpretive structural modeling. Journal of Information Technology Management, 20(6), 351–374. https://www.magiran.com/p1327003 [in Persian]
Howard, L. W., Tang, T. L., & Austin, M. J. (2015). Teaching critical thinking skills: Ability, motivation, intervention, and the Pygmalion effect. Journal of Business Ethics, 128, 133–147.
Hu, W., Jia, X., Plucker, J. A., & Shan, X. (2016). Effects of a critical thinking skills program on the learning motivation of primary school students. Roeper Review, 38(2), 70–83.
Imanzadeh, A., Dehghanzadeh, H., Nouri, H., & Hosseinzadeh, S. M. (2023). The relationship between media literacy, problem-solving skills, and critical thinking among students of the University of Tabriz. Contemporary Issues in Cognitive Psychology, 4(1), 1–20. https://doi.org/10.22034/cipj.2023.58950.1101 [in Persian]
Jarvis, P. (2006). Teaching styles and teaching methods. In The theory and practice of teaching (pp. 28–38). Routledge.
Kaur, R., & Watson, J. A. (2024). A scoping review of postharvest losses, supply chain management, and technology: Implications for produce quality in developing countries. (Journal name pending).
Kealey, B. T., Holland, J., & Watson, M. (2005). Preliminary evidence on the association between critical thinking and performance in principles of accounting. Issues in Accounting Education, 20(1), 33–49
Kek, M. Y., & Huijser, H. (2011, June 1). The power of problem-based learning in developing critical thinking skills: Preparing students for tomorrow’s digital futures in today’s classrooms. Higher Education Research & Development, 30(3), 329–341. https://doi.org/10.1080/07294360.2011.558203
Khan, K. S., Kunz, R., Kleijnen, J., & Antes, G. (2003). Five steps to conducting a systematic review. Journal of the Royal Society of Medicine, 96(3), 118–121. https://doi.org/10.1258/jrsm.96.3.118
Khandagale, V. S., & Shinde, A. V. (2021, August). Investigation of misconceptions for valency and chemical bonding among high school students. Online Submission, 8(3), 539–544. [Link not available]
Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Software Engineering Group, School of Computer Science and Mathematics, Keele University, 1–57. https://doi.org/10.1145/1134285.1134500
Kumar, A., & Kumar, S. (2023). Applying ISM and MICMAC for analysing critical success factors in engineering education. Journal of Engineering Education, 112(2), 215–230. https://doi.org/10.1016/j.jenged.2022.07.003
Li, L. (2016). Thinking skills and creativity in second language education: Where are we now? Thinking Skills and Creativity, 22, 267–272. [Link not available]
Lim, E. W. C. (2021). Technology enhanced learning of quantitative critical thinking. Education for Chemical Engineers, 36, 82–89. [Link not available]
Litzinger, T., Lattuca, L. R., Hadgraft, R., & Newstetter, W. (2011). Engineering education and the development of expertise. Journal of Engineering Education, 100(1), 123–150. [Link not available]
Litzinger, T., Lattuca, L. R., Hadgraft, R., & Newstetter, W. (2011). Engineering education and the development of expertise. Journal of engineering education100(1), 123-150.‏
Luka, I. (2020). Critical thinking skills and their role in learning. Journal of Educational Psychology, 112(2), 215–230. https://doi.org/10.1037/edu0000369
Marangunić, N., & Granić, A. (2015). Technology acceptance model: A literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81–95. https://doi.org/10.1007/s10209-014-0348-1
Masek, A., & Yamin, S. (2011). The effect of problem-based learning on critical thinking ability: A theoretical and empirical review. International Review of Social Sciences and Humanities, 2(1), 215–221. [Link not available]
Mellon, N., Ramli, R. M., Rabat, N. E., Amran, N. A., & Azizan, M. T. (2017, November 17–20). Instilling the 4Cs of 21st century skills through integrated project via cooperative problem-based learning (CPBL) for chemical engineering students. In 2017 7th World Engineering Education Forum (WEEF). IEEE. [Link not available]
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269. [Link not available]
Osborne, J. (2003). Learning and teaching about the nature of science. In Aspects of Teaching Secondary Science (pp. 229–237). Routledge.
Pisani, S., & Haw, M. D. (2023). Learner agency in a chemical engineering curriculum: Perceptions and critical thinking. Education for Chemical Engineers, 44, 200–215.
Plano Clark, V. L. (2017). Mixed methods research. The Journal of Positive Psychology12(3), 305-306.‏
Ramirez-Corona, N., Lopez-Malo, A., Palou, E., Chávez-Torrejón, G., & Husted, S. (2014). Fostering the development of critical thinking in an introduction to chemical process engineering design course. In 2014 ASEE Annual Conference & Exposition (pp. 24–625).
Raut, S., Bharti, V. S., & Gupta, N. (2022). Assessment of heavy metal contamination by multivariate statistical methods from the sediment of Ulhas River Estuary, Maharashtra, India. Environmental Conservation Journal, 23(3), 135–144.
Ravi, V., Shankar, R., & Taiwari, M. K. (2005). Productivity improvement of a computer hardware supply chain. International Journal of Productivity and Performance Management, 54(4), 239–255.
Ribeiro, V., Monteiro, I., & Quinta e Costa, M. (2016, July). Geography, history and natural sciences: An interdisciplinary teaching approach with GIS. In 8th International Conference on Education and New Learning Technologies – EDULEARN16 Proceedings (pp. 3329–3335). IATED.
Ruiz-Benitez, R., & Cambra-Fierro, J. (2011). Reverse logistics practices in the Spanish SMEs context. Journal of Operations and Supply Chain Management, 4(1), 84–93.
Salehi, K., & Golafshani, N. (2010). Commentary: Using mixed methods in research studies: An opportunity with its challenges. International Journal of Multiple Research Approaches, 4(3), 186–191. https://doi.org/10.5172/mra.2010.4.3.186
Salehian, A., Moradvisi, J., Naderian, A., & Gharibi, H. (2024). Exploring barriers to critical thinking in the field of education. Learner-Centered Curriculum and Instruction Journal, 3(1). https://cipj.tabrizu.ac.ir [in Persian]
Santos, L. F. (2017). The role of critical thinking in science education. Online Submission, 8(20), 160–173.
Semerci, Ç. (2011). The relationships between achievement-focused motivation and critical thinking. African Journal of Business Management, 5(15), 6179–6183.
Shaw, A., Liu, O. L., Gu, L., Kardonova, E., Chirikov, I., Li, G., et al. (2020). Thinking critically about critical thinking: Validating the Russian HEIghten® critical thinking assessment. Studies in Higher Education, 45(9), 1933–1948.
Shuman, L. J., Besterfield‐Sacre, M., & McGourty, J. (2005). The ABET “professional skills”—Can they be taught? Can they be assessed?. Journal of engineering education94(1), 41-55.‏
Singh, M. D., Shankar, R., Narain, R., & Agarwal, A. (2003). An interpretive structural modeling of knowledge management in engineering industries. Journal of Advanced Management Research, 1(1), 28–40.
Soodmand Afshar, H., Rahimi, E., & Rahimi, M. (2014). Instrumental motivation, critical thinking, autonomy, and academic achievement of Iranian EFL learners. Issues in Educational Research, 24(3), 281–298. [in Persian]
Th, M., Schaer, E., Abildskov, J., Feise, H., Glassey, J., Liauw, M., et al. (2022). The importance/role of education in chemical engineering. Chemical Engineering Research and Design, 187, 164–173.
Thakkar, J., Deshmukh, S. G., Gupta, A. D., & Shankar, R. (2007). Development of a balanced scorecard: An integrated approach of interpretive structural modeling (ISM) and analytic network process (ANP). International Journal of Productivity and Performance Management, 56(1), 25–59.
Uzumcu, Z., & Bay, E. (2020). The importance of critical thinking skills in educational settings: A review. Journal of Education and Training Studies, 8(6), 27–35. https://doi.org/10.11114/jets.v8i6.4775
Valenzuela, J., Nieto, A., & Saiz, C. (n.d.). Critical thinking motivational scale: A contribution to the study of the relationship between critical thinking and motivation.
Woods, D. R., Felder, R. M., Rugarcia, A., & Stice, J. E. (2000). The future of engineering education: Part 3. Developing critical skills. Chemical Engineering Education, 34(2), 108–117.
Xia, Y., Cutler, S., & McFadden, D. (2020, June). Collaborative project-based learning approach to the enculturation of senior engineering students into the professional engineering practice of teamwork. In 2020 ASEE Virtual Annual Conference Content Access.
Yau, J., & Cheah, S. M. (2011, June). Curriculum integration: Twinning of a core chemical engineering module with a teamwork & communication module. In Proceedings of the 7th International CDIO Conference (pp. 20–23).
Zahedi, M., Shahin, M., & Babar, M. A. (2016). A systematic review of knowledge-sharing challenges and practices in global software development. International Journal of Information Management, 36(6), 995–1019. https://doi.org/10.1016/j.ijinfomgt.2016.06.007[in Persian]
  • تاریخ دریافت: 01 فروردین 1404
  • تاریخ بازنگری: 02 اردیبهشت 1404
  • تاریخ پذیرش: 14 اردیبهشت 1404
  • تاریخ اولین انتشار: 01 آذر 1404
  • تاریخ انتشار: 01 آذر 1404